VIEW FROM EARTH

- A composite of the night sky for a whole night
- Like looking up into a bowl painted with stars
 - "Celestial Sphere", more later on this

CONCAM project, KPNO, 12/25/00

OVER A WHOLE NIGHT...

© Anglo-Australian Observatory

- We see the stars spin around the pole
 - This is the south celestial pole, seen from Australia
 - We see the same thing around the North Celestial Pole (near the star "Polaris")

Photo by David Malin, AAO

- 20:00 Aug 30
- Whole Sky

Moon tonight looks like:

Only 61% illuminated, Full Moon is a week away

WHAT DO <u>YOU</u> SEE?

- Early evenings are pretty nice this time of year.
 - Go look at what's being talked about in class!
 - Grab a pair of binoculars, you will be pleasantly surprised (but don't expect colorful close-ups like in the book)
 - Look at Moon!!
- Note the light pollution
 - What can be done?

WHAT DO <u>YOU</u> SEE?

- Standing outside looking up, sky looks like a hemisphere
 - Zenith straight up, Meridian is line from N-S

THE CELESTIAL SPHERE

- is the Sky as if it were a glass ball and we were at the center
- Stars appear fixed on this sphere
- It rotates as if it were on a rod run through the Celestial Poles (North & South)
- Stars are fixed points of light on this sphere. Patterns form Constellations
 - These also divide the sky up into areas

THE CELESTIAL SPHERE

- Silly? But that's what it looks like.
 - Sit around outside for a few hours and see
 - Or, try this java applet:
 - <u>http://physics.weber.edu/s</u>
 <u>chroeder/sky/skymotionap</u>
 <u>plet.html</u>

© Anglo-Australian Observatory

Circumpolar stars never rise or set

THE CELESTIAL SPHERE

- A different perspective
- Celestial poles, equator are projections of Earth's
- Ecliptic is path the sun appears to take around the sky over a year

CONSTELLATIONS

- Started as fanciful patterns, as old as civilization
- Now areas on the sky, exact boundaries were decided by the IAU
- There are 88 about half are old Greek/Roman
 - Newer ones such as "Microscopium" very un-mythical
- See class website for link to Big List of names

NOTES ON CONSTELLATIONS

- They are 2-D projections of random 3-D distributions of stars in space
- Size of star on picture, sky chart related to brightness

 not actual size
 - All stars are so far away they appear as points
 - Planets can be seen as disks (also why they don't twinkle)
- Over a really long time, *proper motion* will change their shapes a bit

THE BIG DIPPER

Animation from "The Astronomy Nexus"

- An *Asterism* not a Constellation
- Left the proper motion in the Big Dipper, over 100,000 years
- These stars are pretty close to us
- 5 are actually an "Association", or loose group

POSITIONS

- Angular Separation
- What's the angle between two things we see?
- Or size -
 - Moon, Sun ~0.5°
 wide

DEGREES, MINUTES, SECONDS

- Measured in:
 - Degrees
 - minutes (1/60th of a degree)
 - seconds (1/60th of a minute)

MOON ON THE HORIZON

- Image of moonrise
 - Over Seattle
 - Multiply exposed every 2.5 minutes
 - Last exposure long
- Note moon stays the same size 0.5°
- From Astronomical Picture of the Day
 - See class website for link

Picture by Shay Stephens

CELESTIAL COORDINATES

- The Earth has latitude and longitude, poles, and an equator.
- Project those onto the sky so now each part of the sky also has a coordinate (like in "Battleship")
 - <u>Declination</u> is like latitude, measured in degrees north or south of the equator
 - *e.g.*, Betelgeuse is at Dec +7°24′24.0″
 - <u>Right Ascension</u> is like longitude, but is measured in hours, minutes, and seconds (24^h makes the whole circle)
 - *e.g.*, Betelgeuse is at RA 5hr, 55min,10.3s (or 5^h55^m.17)

CELESTIAL COORDINATES

(a)

(b)

MOTIONS ACROSS SKY

- The Stars move across the sky
 - from East to West
 - complete trip is one sidereal day (23^h56^m)
 - stay fixed relative to each other
- We saw this animation already...

EARTHLY COORDINATES

Duluth is at: 46°46′56″ N 92°06′24″ W

THE NORTH STAR (POLARIS) IS 50° ABOVE YOUR HORIZON, DUE NORTH. WHERE ARE YOU?

- 1. You are on the equator.
- 2. You are at the North Pole.
- 3. You are at latitude 50°N
- 4. You are at longitude 50°E.
- 5. You are at latitude 50°N and longitude 50°E.

LOCAL COORDINATES

- Horizon: Line where Sky meets Earth
- Zenith (straight up), Nadir (Straight down)
- Meridian
 - Line from N to S through Zenith
 - Things are at their highest point in the sky when they cross the Meridian
- To point a telescope:
 - Altitude (angle above Horizon)
 - Azimuth (angle around the Horizon)

MOTIONS ACROSS SKY

- The Sun moves across the sky: in a day
 - from East to West
 - Complete trip is one *solar day* (24^h)
 - moves by ~1°/day compared to the stars, from West to East
 - <u>Almost</u> just like the stars
- In a year:
 - Moves along *ecliptic* a path inclined by 23.5° from the celestial equator due to the tilt of the Earth's axis

WHY THE DIFFERENCE IN A DAY?

- The Earth rotates on its axis once every 23^h56^m, causing our view to spin
- The Earth orbits the Sun once every ~365.25 days
 - So Sun makes a complete 360° trip around the sky once per year
 - It takes an extra 4 minutes of Earth's rotation for our view to catch up with the ~1° movement of the Sun compared to the background stars!

Animation illustrating that a solar day is about 4 minutes longer than a sidereal day because of the Earth's motion on its orbit

Animation from Univ. of Tennesee's online astro course

PATH OF SUN ALONG ECLIPTIC

ECLIPTIC ON THE CELESTIAL SPHERE

