VEWFROMEARTH

KPNO/NOAO

- A composite of the night sky for a whole night
- Like looking up into a bow painted with stars
- "Celestial Sphere", more later on this

NSF/NASA Michigan Tech

CONCAM project, KPNO, 12/25/00

OVER A WHOLE NIGHT. . .

- We see the stars spin around the pole
- This is the south celestial pole, seen from Australia
- We see the same thing around the North Celestial Pole (near the star "Polaris")
© Anglo-Australian Observatory

$\mathrm{TONIGHT}_{\mathrm{N}}$

WHAT DO YOU SEE?

- Early evenings are pretty nice this time of year.
- Go look at what's being talked about in class!
- Grab a pair of binoculars, you will be pleasantly surprised (but don't expect colorful close-ups like in the book)
- Look at Moon!!
- Note the light pollution
- What can be done?

WHAT DO YOU SEE?

- Standing outside looking up, sky looks like a hemisphere
- Zenith straight up, Meridian is line from N-S

Fg.2.6

THE CELESTIAL SPHERE

- is the Sky - as if it were a glass ball and we were at the center
- Stars appear fixed on this sphere
- It rotates as if it were on a rod run through the Celestial Poles (North \& South)
- Stars are fixed points of light on this sphere. Patterns form Constellations
- These also divide the sky up into areas

THE CELESTIAL SPHERE

Silly? But that's what it looks like.

- Sit around outside for a fewhours and see
- Or, try this java applet:
- hitp://physics.weber.edu/s chroeder/sky/skymotionap plet.htm

Circumpolar stars never rise or set

THE CELESTIAL SPHERE

- Adifferent perspective
- Celestial poles, equator are projections of Earth's
- Ecliptic is path the sun appears to take around the sky over a year

CONSTELLATIONS

- Started as fanciful patterns, as old as civilization
- Now areas on the sky, exact boundaries were decided by the IAU
- There are 88-about half are old Greek/Roman
- Newer ones such as
"Microscopium" very un-mythical
- See class website for link to Big List of names

Fig.2.2

DIFFERENT VEWS OF ORION

NOTES ON CONSTELLATIONS

- They are 2-D projections of random 3-D distributions of stars in space
- Size of star on picture, sky chart related to brightness - not actual size
- All stars are so far away they appear as points
- Planets can be seen as disks (also why they don't twinkle)
- Over a really long time, proper motion will change their shapes a bit

THE BIG DIPPER

- An Asterism not a Constellation
- Left - the proper motion in the Big Dipper, over 100,000 years
- These stars are pretty close to us
- 5 are actually an
"Association", or loose group

Animation from"The Astronomy Nexus"

POSITIONS

(a)

- Or size -
- Moon, Sun ~0.5 wide

DEGREES, MINUIES, SECONDS

- Measured in:
- Degrees
- minutes (1/60 ${ }^{\text {th }}$ of a degree)
- seconds ($1 / 60^{\text {th }}$ of a minute)

Fig. 2.8

MOON ON THE HORIZON

- Image of moonrise
- Over Seattle
- Multiply exposed every 2.5 minutes
- Last exposure long
- Note moon stays the same size - 0.5°
- FromAstronomical Picture of the Day
- See class website for link

CELESTIAL COORDINATES

- The Earth has latitude and longitude, poles, and an equator.
- Project those onto the sky - so now each part of the sky also has a coordinate (like in "Battleship")
- Declination is like latitude, measured in degrees north or south of the equator
- e.g., Betelgeuse is at Dec $+7^{\circ} 24^{\prime} 24.0^{\prime \prime}$
- Right Ascension is like longitude, but is measured in hours, minutes, and seconds (24^{h} makes the whole circle)
- e.g., Betelgeuse is at RA 5hr, 55min,10.3s (or $5^{\text {h }} 55^{\mathrm{m}} .17$)

CELESTIAL COORDINATES

North celestial pole

(a)
(b)

MOTIONS ACROSS SKY

- The Stars move across the sky
- from East to West
- complete trip is one sidereal day ($23^{\text {h }} 56^{m}$)
- stay fixed relative to each other
- We saw this animation already...

EARTHLY COORDINATES

Duluth is at: $46^{\circ} 466^{\prime \prime} \mathrm{N}$ 920ㅇ́ㄴ" W

Fig. 2.11

THE NORTH STAR (POLARIS) IS 50 ABOVE YOUR HORIZON, DUE NORTH. WHERE ARE YOU?

1. You are on the equator.
2. You are at the North Pole.
3. You are at latitude $50^{\circ} \mathrm{N}$
4. You are at longitude $50^{\circ} \mathrm{E}$.
5. You are at latitude $50^{\circ} \mathrm{N}$ and longitude $50^{\circ} \mathrm{E}$.

LOCAL COORDINATES

- Horizon: Line where Sky meets Earth
- Zenith (straight up), Nadir (Straight down)
- Meridian
- Line from N to S through Zenith
- Things are at their highest point in the sky when they cross the Meridian
- To point a telescope:
- Altitude (angle above Horizon)
- Azimuth (angle around the Horizon)

Fig.2.6

MOTIONS ACROSS SKY

- The Sun moves across the sky: in a day
- from East to West
- Complete trip is one solar day (24)
- moves by $\sim 1 \%$ day compared to the stars, from West to East
- Almost just like the stars
- In a year:
- Moves along ecliptic - a path inclined by 23.5° from the celestial equator due to the tilt of the Earth's axis

WHY THE DIFFERENCE IN A DAY?

- The Earth rotates on its axis once every $23^{\text {h }} 56^{m}$, causing our view to spin
- The Earth orbits the Sun once every -365.25 days
- So Sun makes a complete 360° trip around the sky once per year
- It takes an extra 4 minutes of Earth's rotation for our view to catch up with the $\sim 1^{\circ}$ movement of the Sun compared to the background stars!

> Animation illustrating that a solar day is about 4 minutes longer than a sidereal day because of the Earth's motion on its orbit

Animation from
Univ. of Tennesee's online astro course

PATH OF SUN ALONG ECLIPTIC

ECLIPTIC ON THE CELESTIAL

SPHERE

- Or, projected on the celestial sphere:
- http://www.youtu be.com/watch? =2-Ttcfmbrk

Unrolled:

