PLANETARIUM SHOWS

- Seeing the "what does stuff do in the sky" things we're going to talk about is way easier in the planetarium than in class or the book
- Go to one of the four shows scheduled over the next couple weeks
 - This is a required, if ungraded, assignment
- More info <u>here</u>, first two shows are tomorrow at 4pm and 6pm!

MORE TERMS

- Zodiac the 13 constellations whose areas in the sky the sun crosses
 - Sun is currently "in" Leo (gets into Virgo Sept. 16)
- Terminology has been borrowed by Astrologers
 - Many studies have shown no correlation between which stars were on a line with the Sun when you were born and anything (*besides when you get birthday presents*) – the predictions of the Astrology theory don't stand the test of observation
 - Note that *precession* over the last 2000 years has changed which "sign" it is and where the sun actually is, and added a 13th (Ophiuchus, Nov. 30-Dec.18) to the mix.

EARTH IS CLOSER TO THE SUN IN THE SUMMER AND FARTHER AWAY IN THE WINTER

False

True

A.True

B.False

Hint: when it's summer in the US, it is winter in Australia

SEASONS

Fig.2.16

- In Summer, sun is higher in the sky.
 More daylight, more direct sun, warmer
- In Winter, sun is low, short days, very angled sun, colder

WHY DOES THE SUN MOVE NORTH & SOUTH?

- Due to the Earth's 23.5° tilt
 - sometimes the North pole is tilted away from the Sun
 - Sun appears further to the South
 - Shorter day, less direct light makes winter cold
 - 6 months later, the North Pole is tilted towards the Sun
 - Sun appears to be further to the North
 - Longer Day, more direct light makes summer warm

SEASONS

Distance from Earth to Sun has little to do with Seasons!

THE "ANALEMMA"

Fig.2.17

• Snapshots of where the sun is in the sky at the same time each day over a whole year

SOME RELATED QUESTIONS:

 Why do people living near the equator not experience major seasonal changes?
Also, why are the Earth's poles so cold?

EQUATOR

- Not only the half-way line, but:
 - Where the Sun is directly overhead on the equinoxes
- Sun is never more than 23.5° away from going directly above you
 - Toasty!

SOME RELATED QUESTIONS:

- Why do people living near the equator not experience major seasonal changes?
 Also, why are the Earth's poles so cold?
- What's the significance of the Arctic and Antarctic Circles? How about the Tropics of Capricorn and Cancer?

TROPIC OF CANCER

- The line at 23.5° N latitude
- At the Summer Solstice, the Sun will be directly overhead
- Named for the constellation the sun was in at the time (2000 years ago – now it's in Gemini)
- Similarly for tropic of Capricorn, 23.5° S (Sagittarius)

ARCTIC CIRCLE

- At 66.5°N
 - Why? 90°-23.5°=?
- Defined as the line where at the winter solstice, the sun is too far south to rise
 - 24h of night!

Or, at the summer solstice, the sun is so far north it doesn't set

- Land of the midnight sun
- Antarctic Circle similar

SOLSTICE AT THE ARCTIC CIRCLE

- The spinning earth, like a spinning top, precesses
 - The axis of rotation wobbles
- This wobble takes 26,000 years
- So different stars appear to be "pole stars" at different times

PRECESSION AND THE ZODIAC

Wobble where the celestial pole lies, and the ecliptic slips into different constellations at different times

PHASES OF THE MOON

As moon orbits Earth, we see more or less of the surface illuminated

Waning

• Getting smaller

Waxing

• Getting bigger

Full – Gibbous – 3rd ¼ - Crescent – New – Crescent – 1st ¼ - Gibbous - Full

Diagram from from Univ. of Tennesee's online astro course, animation linked to on class website

PERIODS OF REVOLUTION

Diagram by Bruce Stewart

Sidereal

- Time it takes moon to return to the same place in the sky compared to background stars
- 27 1/3 days
- Synodic
 - Time it takes the moon to get back to the same phase
 - 29 ½ days
 - The Lunar Month

LUNAR ECLIPSES

- When the Moon passes through the Earth's shadow, it dims
 - Not a lot if in "penumbra"
 - Sometimes a bunch if in "umbra"
- Red color is light being bent around Earth by the atmosphere
 - Red for the same reason as sunsets are red!

Photo of July 2000 lunar eclipse by Akira Fujii For *Sky & Telescope*

WHEN DO THEY OCCUR?

Light from Sun

- At full moon
 - When the Earth is between the Moon and Sun

Copyright © 2010 Pearson Education, Inc

WHEN DO THEY OCCUR?

- Why not every full moon?
 - The Moon's orbit is tilted compared to the ecliptic
 - Can happen only each 6 months
- Why not every 6 months?
 - Must be full moon while in position
 - If Moon is near apogee, it's too far out to hit umbra

UMBRAVS. PENUMBRA

This observer is looking at the Earth and Sun from point *A*, in the umbra of the Earth's shadow. This observer is looking at the Earth and Sun from point *B*, in the penumbra of the Earth's shadow.

WHEN CAN YOU SEE ONE?

- For any Lunar Eclipse, everyone on the night side of the Earth can see it, since everyone sees the same moon
 - Needs to be nighttime and clear at our location
- The next eclipse: Jan 31 2018, a penumbral lunar eclipse you'll have to go out west to see
 - http://eclipse.gsfc.nasa.gov/eclipse.html

SOLAR ECLIPSE

Animation of a Total Solar Eclipse (Distances not to scale)

When the Moon blocks the view of the Sun

- Earth passes through Moon's (pen)umbra
- Occurs at New Moon
 - When Sun/Moon/Earth is lined up
- Moon's shadow is small
 - Only people in the path of the shadow can see a Solar Eclipse

From UTK

TOTAL ECLIPSE

- Total Eclipse
 - When Moon is close enough that it's angular size is just a bit bigger than the Sun's
 - And you are in Moon's umbra (~100 mi wide path)
 - Outside the umbra, you see a partial eclipse
- When the Sun's disk is completely covered, we can see the fainter corona (the Sun's outer atmosphere)

www.MrEclipse.com

DIAGRAM OF PENUMBRA

- If the Moon is to far away for the umbra to reach Earth, we see one of:
 - Annular eclipse
 - Partial eclipse

Penumbra	·P
	A
Penumbra	

ANNULAR AND PARTIAL ECLIPSES

- Annular Eclipse
 - The Moon is a bit further away, we see a ring of the Sun's disk
- Partial Eclipse
 - Things don't line up just right
 - We are in Moon's penumbra

SEEING A SOLAR ECLIPSE

- Since you have to be in the shadow and the shadow is small, these are harder to see
 - Just had one Aug. 21, 2017
 - Next one in the US is April 8, 2024
 - People travel to the shadow, good excuse for vacations in exotic places

WHAT PHASE MUST THE MOON BE IN FOR A LUNAR ECLIPSE TO OCCUR?

- 1. New Moon
- 2. First Quarter
- 3. Full Moon
- 4. Third Quarter

PLANETS

- Are all going around sun too, in about the same plane
 - So move around compared to the stars, hang out near the ecliptic
 - In fact, the word planet comes from the root word "wanderer" in greek
- However, when Earth "laps" a planet, it appears to go backwards (see animated figure from the book)
 - Much more on this in the next chapter

- Parallax is the different apparent position of something nearby compared to something far as one moves back & forth
 - Your thumb as you blink, for example
- For nearby stars, you compare to far away stars as the earth moves around

Diagram by Dr. Terry Herter, Cornell Animation by R. Pogge, OSU

EXAGGERATED PARALLAX

Distance at which a star subtends 1 second of arc is called 1 *parsec* (3.26 ly, it turns out)

- 1 AU is only 1/63,000 ly
- Nearest star is 4.2 ly
- Most stars you see are dozens to hundreds of ly
- So even biggest parallaxes are only about 1 arc-second! Too small to see without good equipment
- What if the earth's orbit was 1.5 ly instead of only 1AU?