MOTION

- Speed: rate at which something moves:
- speed = distance/time (m/s, miles/hour, km/hr)
- Velocity: Speed with a direction
- 70 mph south on l-35 is very different than 70 mph north
- Acceleration: a change in velocity
- Speed up, slow down, OR change direction
- Units of $(\mathrm{m} / \mathrm{s}) / \mathrm{s}$ thus $\mathrm{m} / \mathrm{s}^{2}$

Fig.4.1

ACCELERATION OF GRAVITY

- All falling objects accelerate at the same rate (not counting friction of air resistance).
- On Earth, $g \approx 10 \mathrm{~m} / \mathrm{s}^{2}$: speed increases $10 \mathrm{~m} / \mathrm{s}$ with each second of falling.

Fig.4.2

MASS DOESN'T MATTER

- Galileo showed everything falls at the same rate regardless of mass
- If you account for air resistance: same size balls of different weights took the same time to reach the bottom

MOMENTUM AND FORCE

- Momentum = mass x velocity.
- A net force changes momentum, which generally means an acceleration (change in velocity).
- "Net" means extra or unbalanced: I am standing on the floor, but not falling down: why?
- The rotational momentum of a spinning or orbiting object is known as angular momentum

MASS VS WEIGHT

- Mass-the amount of matter in an object
- Weight-the force that acts on an object due to that mass and some gravity

. . you weigh less.

ON THE MOON:

1. your weight is the same; your mass is less.
2. your weight is less; your mass is the same.
3. your weight is more; your mass is the same.
4. your weight is more; your mass is less.

WHY ARE ASTRONAUTS WEIGHTLESS IN SPACE?

- Plenty of gravity out there

The faster you run from the tower,
the farther you go before falling to Earth.

NEWTON'S LAWS

1. Law of Inertia - Unless an object is acted on by a net outside force, it will keep moving at constant speed in a straight line (if moving) or stay put (if at rest)

- Inertia - the tendency of an object to resist a change in its motion

NEWTON'S SECOND LAW

- A net external force applied to an object causes it to accelerate at a rate that's inversely proportional to its mass

F/m=a

- Mass is not weight
- Weight is the force gravity exerts
- Mass is how hard it is to get something moving
- Acceleration is the change in speed

NEWTON'S THIRD LAW

- Equal and Opposite Forces
- When an object X exerts some force on object Y, object Y will exert an equal and opposite force back on X
- e.g., I lean on the wall, the wall pushes back on me and keeps me from falling over

THINGS TO CONSIDER...

A compact car and a large truck have a head-on collision. Are the following true or false?

- The force of the car on the truck is equal and opposite to T the force of the truck on the car.
- The momentum transferred from the truck to the car is T equal and opposite to the momentum transferred from the car to the truck.
- The change of velocity of the car is the same as the change of velocity of the truck.
- Hint - momentum = mass x velocity

CONSERVATION OF MOMENTUM

- Total momentum of a set of things cannot change unless an external force is acting on them
- Interacting objects exchange momentum through equal and opposite forces
- Seems esoteric: but knowing this lets us figure out many things about interacting objects

ROTATING THINGS STILL CONSERVE MOMENTUM

- Angular Momentum = mass x velocity x radius
- The angular momentum of an object cannot change unless an external twisting force (torque) is acting on it.
- Earth experiences no twisting force as it orbits the Sun, so its rotation and orbit will continue indefinitely.

THIS MAKES PLANETS KEEP GOING

Angular momentum ($=m \times v \times r$)

 is conserved as Earth orbits the Sun.Distance (r) is greater, so velocity (v) is smaller. ${ }^{\circ}$

Not to scale!
Distance (r) is smaller, so velocity (v)
is greater.

Fig.4.6

OR SKATERS DO THAT SPINNY MOVE

We'll see this in action with stars and stuff A LOT later on in the course

Fig.4.7

ENERGY

- Something else which is "conserved"
- ie, you don't make it or destroy it, you can simply shufile it around

Fig. 4.8

TRADING AROUND ENERGY

The total energy (kinetic + potential) is the same at all points in the ball's flight.

- For example, tossing a ball up in the air

Fig.4.12a
a The ball has more gravitational potential energy when it is high up than when it is near the ground.

THERMAL ENERGY

- Simply the sum of all the kinetic energies of all the molecules rattling around in side of things
lower temperature

higher temperature

TEMPERATURE SCALES

Fig.4.10

THERMAL ENERGY VS TEMPERATURE

- Thermal energy is a measure of the total kinetic energy of all the particles in a substance. It therefore depends on both temperature AND density.

TRADING ENERGY AROUND AGAIN

Energy is conserved: As the cloud contracts, gravitational potential energy is

- Gravitational potential energy being turned into
thermal energy to make a star
less gravitational
potential energy
(and more thermal
energy)

more gravitational potential energy

(and less thermal energy)
b A cloud of interstellar gas can contract because of its own gravity. It has more gravitational potential energy when it is
Fig.4.12b spread out than when it shrinks in size.

JUGGLING ENERGY...

- We were talking about juggling energy between different sorts of energy...

MASS AND ENERGY

- Mass can be converted to energy
- E=mc ${ }^{2}$
- Nuclear power, stars, etc
- And mass can be created from energy
- Same formula: I see this all the time in my particle physics experiments

THESE "LAWS" WORK ON EARTH, BUT...

- After taking into account things like friction, Newton's Laws describe what happen around us very well
- How about the planets? Remember that Aristotle had different rules for Heavenly and Earthly things, does Newton know what's going on up there?

CIRCULAR MOTION

- Swing rock around on string
- You pull on the rock with a force through the string
- If you let go, then $\mathrm{F}=0$ and $\mathrm{a}=0$ - Where does Newton's fr 7 Zg law says the rock goes?

ACCELERATION

- In this example, acceleration is changing the rock's direction (thus velocity), not it's speed
- Centripetal force, the force needed to make something go in a circle
- Things don't change direction without being accelerated - and thus being acted on by some force

GRAVITY

- Newton's Law of Universal Gravitation:
- Between any two objects there is an attractive force, the magnitude of which is directly proportional to the mass of each object and inversely proportional to the distance between the centers of the two objects

$$
F=G \frac{m_{1} m_{2}}{d^{2}}
$$

GRAVITY

The universal law of gravitation tells us the strength of the gravitational attraction between the two objects.

$$
F_{g}=G \frac{M_{1} M_{2}}{d^{2}}
$$

M_{1} and M_{2} are the masses of the two objects. d
d is the distance between the centers of the two objects.

IN THIS ROOM?

- We don't feel ourselves being attracted to anything but the ground
- Look at the masses: if m_{1} is you:
- If m_{2} is Earth, it's Real Big, and you feel your weight as this force going down
- If m_{2} is your neighbor, he's $150 \# / 1.3 \times 10^{25} \#$ smaller than the earth
- So his force on you is that much smaller

HOW TO TEST?

- Newton looked at the Moon

Figured the Centripetal Force needed to make it go in a circle

- It's about $1 / 3600$ of the gravitational acceleration we're feeling
- The Moon had been measured (by parallax) to be 60 Earth radii away
- $1 / 60^{2}=1 / 3600$!
$1 / \mathrm{d}^{2}$

NEWTON AND KEPLER

- Kepler's laws had the planets
 moving in an ellipse with the Sun at one focus
- They move faster when closer to the Sun
- Newton says force of gravity is stronger then, so there is a larger acceleration
- Explains Kepler's $2^{\text {nd }}$ and $3^{\text {rd }}$ laws

Generalizes 3 rd law to any orbiting system! Now we can "weigh" Jupiter, binary stars, etc

