SOLAR MAGNETISM

- The Sun rotates, has a conductive core
- Ionized gas
- Has a strong magnetic field
- Sunspots have intense magnetic fields, often paired
- Aloop of field pops up out of the surface and dives back nearby
- Intense field cools the photosphere where it passes through

HOW CAN WE TELL?

- "Zeeman effect"
- Magnetic fields split spectral lines
- Size of split lets us measure size of field
b Very strong magnetic fields split the absorption lines in spectra of sunspot regions. The dark vertical bands are absorption lines in a spectrum of the Sun. Notice that these lines split where they cross the dark horizontal bands
corresponding to sunspots.
Fg.11.13b

SOLAR FLARE

Solar Flare 1971 October 10

Big Bear Solar Observatory

- Big explosion on surface of Sun
. Prominences, CME's Flares similar and related: but not the same

SUNSPOT CYCLE

- Note 11-year cycle
- Sunspots increase in number to a "Solar Maximum" then virtually disappear every 11 years

Fig.11.20a

SUNSPOT CYCLE

- "Butterfly Diagram"
- Sunspot location and number
- At beginning of cycle, they are near the poles
- Move towards equator as cycle progresses

Fig.11.20b

SUNSPOT CYCLE

- Activity in outer atmosphere changes too
- more sunspots, more stuff going on

WHERE ARE WE NOW?

ISES Solar Cycle Sunspot Number Progression Observed doto through Sep 2017

WHY?

- The Sun rotates differentially
- Faster at equator (25 days)
- Slower at poles (36 days)
- Magnetic field gets wound up like rubber band

(c)

(d)

SOLAR CYCLE

- So, an 11-year Sunspot Cycle is $1 / 2$ of the 22 year Solar Cycle
- Each 22 years, the Sun's magnetic field is back to the same state it was 22 years ago

EFFECTS ON EARTH

- Solar Wnd causes Aurora

"Maunder Minimum" corresponds with the "Little Ice Age"
- Solar Flares, CME's can disrupt satellites, communications
- Look at www.spaceweather.com
- Sunspot activity seems to be correlated with solar energy output
- The Sun is a rather important thing to understand
- For life on earth, not just for the test!

MEASURING THE STARS

Ch. 12

STARS

- We look up, we see lots several thousand with the naked eye
- Look more carefully, uncountable numbers wherever you look
- Different colors, brightness's, locations but all just points of light

FROM XKCD.COM:

THIS STARLIGHT FAUS ONOUR EYES AFTER A JOURNEY ACROSS TRILUONS OF MILES-

DING HERE AT LAST, SO FAR FROM HOME, ALL SO WE CAN SEE SOME PRETTY DOTS.

WHAT CAN WE SEE FROMA STAR?

- We just see the light, from a point
- From Ch.5, we can measure:
- Brightness - how much light we see
- Position - where does the light come from?
- Spectra - what color(s) the light is
- and do these properties change with time?

BRIGHTNESS

- α Orionis (Betelgeuse) appears to be about the same brightness as β Orionis (Rigel)

Hunter's belt

Orion nebula

- But - Betelgeuse is only 430 ly away, Rigel is 730!

APPARENT MAGNITUDE

- If they're different distances, but appear to be the same brightness, then they have the same Apparent Magnitude
- However, the further star must be inherently brighter, having a larger Absolute Magnitude

APPARENT

MAGNTUDES

- Hipparchus cataloged 850 stars in ~200BC
- Classed them from brightest (" $1^{\text {st }}$ magnitude") to dimmest (" 6 th magnitude")
- Bigger number means fainter
- "Apparent" means what we see
- HST, Keck - can see +30
- Brightness of a firefly seen from the other side of the Earth

MAGNITUDE DIFFERENCE

- Each step in magnitude corresponds to a change of about 2.5 x in brightness
- So: brightness ratio $=2.5^{\wedge \mathrm{m}}$
- For example:
- How much brighter is a $2^{\text {nd }}$ magnitude star than a $4^{\text {th }}$ magnitude star?
- $\Delta \mathrm{m}=(4-2)=2$
- $2.5^{2}=6.3-$ so it is 6.3 times brighter

PHOTOMETRY

- The measurement of brightness is called photometry
- The advent of digital imaging has made this much easier to do on a lot of stars at once

INVERSE SQUARE LAW

Intensity, like gravity, falls off as $1 / r^{2}$ where r is distance

So, further things are fainter than they would be if closer

So, to know how bright something really is, we need to know how far away it is and how bright it appears to be

DISTANCE

- Stellar parallax is first step
- Watch the star jump around
- Do some trig, calculate distance

PARSEC

- Define a unit of distance:
- How far away a star is that would have a parallax of 1 arc second (1/3600 of a degree)
- This is 3.26 light years = 1 parsec (pc)
- So: distance (parsecs) $=1$ (parallax angle)
- Proxima Centauri has parallax of 0.76"
- So is $1 / 0.76=1.3$ parsecs = 4.3 ly away

SOLAR NEIGHBORHOOD

- Within 4 pc (~13 ly) there are 30 stars
- A few are bright, as you might expect froma close star

Many are still extremely faint, even though they are right next door

LIMITATIONS OF PARALLAX

- From the ground, we can make measurements good to only 0.03" (due to air turbulence)
- Corresponds to $\mathbf{- 3 0}$ pc (~ 100 ly): the nearest few 1000 stars
- Hipparcos the satellite (ESA, 1990's) above the atmosphere measured a million parallaxes, out to ~ 100 pc
- Further out - need other tools (later)

LUMINOSITY

- Wth the Sun, Luminosity was how much energy it put put per second
- Same for other stars
- Often expressed in units of "Solar Luminosity", L_{\odot}
- If two stars are at the same distance:
- More luminosity = more brightness

ABSOLUTE MAGNTUDE

- Calculate what a star would look like if moved to a distance of 10 pc
- This allows comparison of brightness's on an even footing

(b)

BRIGHTNESS IN SUMMARY

- Apparent magnitude is how bright something appears to us
- From the inverse square law, we can calculate how it would appear at any given distance
- Absolute magnitude is how a star would look at a distance of 10 pc
- Directly related to Luminosity

Find any two of the three,
You can calculate the third!

IF A STAR WAS MOVED TWCE AS FAR AWAY, WHAT WOULD HAPPEN TO ITS APPEARANCE?

a. It would get twice as faint
b. It would get four times fainter
c. It would get fainter and redder
d. It would get fainter and bluer
e. If moved only two times farther, you wouldn't notice much change

