OTHER MOTIONS

- The position of a nearby star changing over a year gives us parallax
- Stars can also move on their own
- "Real" motion, not just our point of view
- They are just balls of gas and are moving around too
- Just so far away they appear to move very slowly

PROPER MOTION

- Astar's own movement is called "Proper Motion"

100000 日C

BARNARD'S STAR

- $2^{\text {nd }}$ closest star to the Sun
- 1.82 pc
- Close by things appear to move more quickly
- Has rather large velocity
- 142 km/s total, 89 km/s "Tangential" (sideways)
- Photos below taken 22 years apart

COLORS

- Again, look at Betelgeuse and Rigel
- Betelgeuse is very red
- Rigel is very blue

Hunter's belt
Orion nebula

- Temperatures, composition, etc.

SPECTRAL CLASSES

- Annie Jump Cannon cataloged many stellar spectra around the turn of the (last) century
- Based on which absorption lines they had
- Each class had a letter name

Back in the days when "computer" was a job title!

Fig. 12.5

SPECTRAL CLASSES

- It was later realized that these could be put in temperature order
- Both based on blackbody curve...
- .. and on which elements could survive the heat
- "Oh Be A Fine Girl/Guy Kiss Me" is the order
- Book proposes a more modern one: "Only Bungling Astronomers Forget Generally Known Mnemonics"

SPECTRAL CLASSES

O				
		50000 K		
B				20000 K
A				
F				10000 K
G			7500 K	
K			6000 K	
M			4000 K	
		3500 K		

Figure from Lemke \& Jefferey

SOME EXAMPLES

- Wthin a class, ordered from "O to 9"
- Some stars you might know.
- Mintaka (O9)
- Rigel (B8), Vega (A0), Sirius (A1)
- Canopus (FO)
- Sun (G2), Alpha Centauri (G2)
- Arcturus (K2), Aldebaran (K5)
- Betelgeuse (M2), Barnard's Star (M5)

HOWTO USE THIS INFO

- Say you made a graph of people's height vs. age, with a dot for everyone in the neighborhood:

HERIZSPRUNG-RUSSELL DIAGRAM

- We know stars' temperatures (from their spectral class)
- We know some stars absolute magnitudes (thus their luminosities) because we know their distances
- Plot one vs. the other

HR DIAGRAM

- Each dot is a star
- Most stars line up on the "Main Sequence"
- Interpretation - an average star spends most of it life at this combination of temperature and luminosity

SPECTROSCOPIC PARALLAX

- Has nothing to do with parallax
- But is a way to measure distance, if the star is too far away to get a real parallax
- Measure its temperature, look up the Luminosity on the H-R diagram

Find any two of the three, You can calculate the third!

LUMINOSITY CLASSES

- There are some stars not on the Main Sequence
- Divided into "Luminosity Classes", with roman numeral
- Absorption line shape helps classify
- Thin, narrow lines in giant's atmospheres
- Higher pressure in more compact stars broadens the lines

DIFFERENT LUMINOSITIES?

- If the Stefan-Boltzmann law says $1 \sim \sigma T^{4}$, how do you get different l's for the same T?
- I is intensity - power per square meter
- L is total power - so multiply I by the surface area of the star
- Betelgeuse - M2la Supergiant
- $\sim 1000 R_{o}$ (5 AU!), surface area 1 million x the Sun
- Barnard's Star, M5V Main Sequence
- $0.12 R_{0}$, surface area 1.5\% the Sun's
- Both stars about the same T. Betelgeuse has 69 million times the surface area, so is that much more luminous

A WAY TO FIND A STAR'S SIZE!

- By this line of reasoning,
we can figure out a star's physical size
- Note that stars are mostly too far away to actually see a disk
- Measure T, L (from distance), get R

BETELGEUSES DISK

- Betelgeuse is one of only a

Visible light HST image

- Size of Earth's Orbit!

UVHST image few stars where the disk has been resolved

- Fairly close + huge
- HST only telescope accurate enough to do the job
- Note - Betelgeuse is a variable star, it also changes sizes rather dramatically

STELLAR SIZES

Comparative sizes

- Giants such as Arcturus, Mira~10's of R_{\odot}
- Supergiants like Betelgeuse ~100's of R_{\odot}

Most (super)giants pulsate in size and thus in brightness

ADD TO H-R DIAGRAM

Use the previous calculation to mark the sizes of stars on the $\mathrm{H}-$ R diagram

- Most main sequence stars are about the same radius as the Sun
- Giants, supergiants much larger

WHITE DWARFS?

- A white hot yet faint star*
- Must be very small (small area)
- -earth sized!
- Burnt out cores of old stars

Sirius A \& B in X-Rays
Chandra X-ray obs.
*Also the name of the Indiana Astro department's grad student intramural basketball team

H-R DIAGRAM SUMMARY

- Agraph of Temperature vs. Luminosity
- Each star is a dot on one
- Shows overall trends of how stars work
- Avery important tool - go over it again tonight, figure it out. It will make repeat appearances in this class

WHAT WE KNOW SO FAR

MULTIPLE STAR SYSTEMS

- Finding planets is hard (only recently done for a few thousand stars)
- Very small, dim
- But we can see other stars
- Stars orbiting stars would let us figure out their masses
- Use Kepler's, Newton's laws to figure out the masses of the two stars

OPTICAL DOUBLES

- Just because 2 stars appear next to each other does not make them a gravitationally bound binary (double) star system
- Chance lineups are called "Optical Doubles"

VISUAL BINARIES

- If we can see two stars going about each other, that's a visual binary
- Measure separation, orbital period
- Work out the masses
- Only possible for nearby stars

- β Cygni (Alberio)
- The "beak" star of the swan
- An easy, impressive visual binary
- Can see in binocs, small telescope
- One yellow, one blue
- Polaris also a visual double

ORBITS

- We are used to light things orbiting around heavy things
- What if both things are about the same size - who goes around what?
- Both go around the Center of Mass (c.o.m.)
- True of all objects - even Earth/Sun, but the c.o.m. is very close to the Sun so it's hard to tell
- Kepler's laws apply
- c.o.m. is at a focus of the ellipse
- Things move slower further away from c.o.m.

SPECTROSCOPIC BINARIES

- What if the stars are too close together to tell apart?
- Especially a problem unless they are very close to us!
- Their light is combined, we see one "star"
- Only way to tell it's not really a single star is to look at the spectrum

SPECTROSCOPIC BINARIES

- As the stars orbit, they are moving
- Movement towards or away from us Doppler shifts the spectroscopic lines
- Split lines can mean a binary star

ALCOR \& MIZAR

- Big Dippler handle stars
- A visual binary to the naked eye
- Atraditional vision test
- Mizar is also a telescopic visual binary!

ALCOR \& MIZAR

- Turns out that each "star" is actually a spectroscopic binary too!
- 3 binary stars orbiting each other, a six-star system

