MULTIPLE SYSTEMS

- Actually, more stars than not are part of a multiple-star system
- Binary (just two) stars the most common
- Single stars like our Sun are less common
- Tells us about star/solar system formation:
- What if Jupiter had been a little bigger eddy during formation? It could have become large enough to form a second star?
- Another nice feature of our solar system - a binary system would have made it hard to keep the Earth a nice, even temperature for life

CALCULATE THE ORBITS

- To find the masses, we need to time the orbits, and either:
- Measure separation or measure velocity
- This gives us the total mass
- How close the star stays to the center of mass tells us how much of that total mass belongs to it
- For a visual binary we can figure many things out and crosscheck
- Can't get separation for a spectroscopic binary, but can get the velocity

VEMNG ANGLE

From above (face-on)

In-between

From the side (edge-on)

- Problem - at what angle are we looking at things?
- From above, we would see no Doppler shift
- From the side, we'd see all the motion there is
- In between - our velocity measurement is guaranteed to be low, and we don't know how low
- . . .makes measurements on individual systems uncertain

ECLIPSING BINARIES

- If we see one of the two stars passing in front of the other, we can figure out a lot:
- We know that this is an edge-on system, so can calculate masses well
- By comparing brightness's vs. time, we can learn which star is brighter
- Timing the eclipse tells us the stellar diameters
- Careful study can tell us about the stellar surfaces

ALGOL

- Algol is such a star
- Eye of the Gorgon in Perseus
- Name means "demon"

ALGOL

- The stars are a $3.5 R_{\odot}$ K2 star and a $3 R_{\odot}$ B8 star
- Primary eclipse is when you can't see much of the hot B8
- Note tidal distortion of larger star: it's pulled into a teardrop shape

Animation by Larry Molnar

OTHER BINARIES

- Astrometric Binary
- We see a star moving around about an unseen companion
- Composite Spectrum Binary
- We see a star that has a spectrum which is two different spectral classes mixed together

MASSES

- We can calculate good masses for the following systems:
- Visual binaries
- Eclipsing binaries
- Resolved spectroscopic binaries
- How does mass relate to other things we have measured?

MASS-LUMINOSITY RELATIONSHIP

MASS-LUMINOSITY RELATIONSHIP

- The mathematical function which fits that plot:
- $\mathrm{L}=\mathrm{M}^{3.5}$
- . . . or $\mathrm{L}=\mathrm{M} \times \mathrm{M} \times \mathrm{M} \times$ square $\operatorname{root}(\mathrm{M})$
- So, being a somewhat more massive star means you really burn much more brightly

MASS ON THE HR DIAGRAM

- Add this info to the HR diagram
- Work out the hydrostatic equilibrium of a star:
- Massive star means more gravity, thus more pressure
- More pressure means hotter core
- Hotter core fuses Hydrogen faster
- Faster fusion - more energy - more luminosity!
- How massive a star is the reason behind its temperature and Luminosity

STELLAR
 LIFETIME

- Given the Luminosity (rate at which it puts out energy), how long before a star burns up all the fuel in its core?
- Massive stars burn very brightly
- Live fast, die young

Fig. 12.12

LIFETIME ON THE HR DIAGRAM

Fig.12.11

STAR CLUSTERS

Copyright Anglo-Australian Observatory/Royal Observatory, Edinburgh.

- Stellar sisters
- Formed from fragments of same cloud
"Open Custers" the Pleiades
And Hyades

OPEN CLUSTERS

Sharpless 212 photo by
Lise Deharveng et al

"GALACTIC" CLUSTERS

- Sometimes called "galactic" clusters because they are located in our galaxy
- These are not clusters of galaxies!
- We see them in the plane of the galaxy

GLOBULAR CLUSTERS

- They stick together
- Many stars very close
- Formed a very long time ago
- Hundreds of thousands of stars
- Outside the plane of the galaxy - but part of our galaxy, they are not other galaxies

M80, by F. R. Ferraro \&
M. Shara with the HST

AL L BORN AT THE SAME TIME

- So look at HR diagram of just the stars in that cluster
- Make note of the 'top" of the Main Sequence
- Cluster can't be younger than that

Fg. 12.16

CAN NOW DATE WHOLE CLUSTERS OF STARS

- Look for the 'turn off" from the main sequence
- Hot blue stars die first, then yellow, then red
- Oldest Globular Clusters are 13by old

Fg. 12.17

TWO STARS THAT LOOK VERY DIFFERENT MUST BE MADE OF DIFFERENT KINDS OF ELEMENTS.

a. Yes, stars have a wide range of compositions.

81\%
b. Yes, stars appear different because of their different composition.
C. No, stars appear different due to their different ages and masses, not composition.
d. No, stars appear different because of their varying distances from us.

STELLAR PROPERTIES

- We can measure from the light:
- Brightness (apparent magnitude)
- Position in the sky
- Color (spectra)
- We can watch for changes in all three of these things
- Variable stars
- Parallax, Proper motion, visual binary orbits
- Spectroscopic binaries

PIECE TOGETHER THE PUZZLE

- Use apparent magnitude and distance to learn absolute magnitude and thus Luminosity
- Spectra tell us the temperature (and chemical composition)
- Together, these tell us the stellar radius

PIECE TOGETHER THE PUZZLE

- Plot T vs. L, make a Hertzsprung-Russell diagram
- Find out which stars are like others
- Use this new knowedge of L to find previously unknown distances
- Find masses from binary stars
- Mass-Luminosity relationship tells us stellar lifetimes

A LOT FROMA LITTLE

- We now know.
- How big (mass and radius) stars are
- How far away they are
- What temperature they are
- What they're made of
- How they glow and how long they'll live
- All from a little point of light!

STAR FORMATION

Ch. 13

STUFF BETWEEN THE STARS

- So stars are out there
- What else? What's between the stars?
- We see nebulae, what
i are they?
- Where does this stuff come from and where does it go?

Orion Nebula photo
By Robert Gendler

CONTRADICTION

- Space is very very empty
- Maybe one atom per cubic cm
- Less there than the best vacuum you could make in a lab on Earth
- But we see all this stuff!
- Space is also very very big
- Over light years, a few atoms/cm³ really adds up

INTERSTEL_AR DUST

Stuff between the stars acts like clouds on Earth

- Gets in the way of the starlight
- We see dark areas
- Holes or clouds?
"Interstellar Cirrus"
- After the earthly wispy clouds
"Snake" Nebula
Jean-Charles Cuillandre, CनाT

DUST, NOT JUST TUNNELS?

Photo by
Nigel Sharp, NOAO

SEE THE DUST!

- Dust is cold but still warm enough to radiate infra-red
- So an IR picture picks up dust
- This is the "Horsehead" again in the IR
- Bright spot is a lot of hot dust where a star is forming

IR picture by
L. Nordh et al, ISOCAM

THE INTERSTELLAR MEDIUM

An IR view of dust clouds

In particular, light from polycyclic aromatic hydrocarbons (PAH's)

- Little bit of carbon out there, forms
hydrocarbons like car exhaust
- Associated with dust
- Easy to see

WHAT ARE DUST CLOUDS?

- Mostly hydrogen, helium (of course!)
- Tiny amount of carbon, nitrogen, oxygen etc.
- Bonds with hydrogen
- Forms molecules
- Can accumulate into "dust"
- Cold - few tens of K!
- Big - few parsecs to tens of parsecs across
- Comparatively dense - maybe a million molecules per cm^{3}

