

Connect A and B together momentarily with a wire. What happens?

$$
\begin{aligned}
& q_{A} \text { was }-2 n c \quad q_{B} \text { was }-4 n c \\
& q_{A} \text { now? }-3 n c \\
& q_{B} \text { now? }-3 n c
\end{aligned}
$$

Connect B to ground momentarily. What happens?

$$
\begin{aligned}
& q_{B}:-3 n c \text { to start } \\
& \text { new } q_{B}=0
\end{aligned}
$$

B was $0, C$ was +8 m
Connect B and C momentarily.
What's new $\left|F_{A C}\right|$?
$F_{A B}{ }^{?}$
fac

$$
\begin{aligned}
& \operatorname{li} \frac{q_{A} q_{C}}{r^{2}}=F_{A C} \\
& =2.70 \times 10^{-6} \mathrm{~N}
\end{aligned}
$$

How about $\left|\mathrm{F}_{\mathrm{BC}}\right|$? Directions?

$$
F=\frac{k q_{1} q_{2}}{r^{2}}
$$

Worksheet that says "page 13" (ranking forces at point P)

Worksheet that says "page 14" (balls hanging from strings)

(not for clickers, we'll work it out)

- 5 charged particles, evenly spaced. What's the one with the biggest force on the central particle?
(1)

(2)

(3)

(4)

What year are you in?

1. Freshman
2. Sophomore
3. Junior
4. Senior
5. Other

44 of 57

What is your Major?

1. Physics
2. Biology
3. Chemistry
4. Geology
5. Engineering
6. Other

45 of 59

Consider the two charges shown in the drawing. Which of the following statements correctly describes the magnitude of the electric force acting on the two charges? $F_{E}=\frac{k a_{1} 9_{2}}{r^{2}}$

1. The force on q_{1} has a magnitude that is twice that of the force on q_{2}.
2. The force on q_{2} has a magnitude that is

$$
q_{1}=+3.2 \mu \mathrm{C}
$$

 twice that of the force on q_{1}.
3. The force on q_{1} has the same magnitude as that of the force on q_{2}.
4. The force on q_{2} has a magnitude that is four times that of the force on q_{1}.
5. The force on q_{1} has a magnitude that is four times that of the force on q_{2}.

47 of 59

As shown in the drawing, a positively charged particle remains stationary between particles A and B. The positively charged particle is one-quarter the distance between the two other particles, as shown. What can be concluded from the situation? ${ }^{6} \%$

1. The charge on A is $4 \times B$'s.
2. The charge on A is $16 x B$'s
3. The charge on A is $1 / 2 B^{\prime} s$
4. The charge on A is $1 / 4 B^{\prime} s$
$\sqrt{ }$. The charge on A is $1 / 9^{\text {th }} B^{\prime} s$

$$
F_{A}=F_{B}
$$

$$
\frac{k q_{A} q_{A}}{r_{A}^{2}}=\frac{k q_{B} q_{F}}{r_{B}^{2}} \quad \frac{q_{A}}{q_{B}}=\frac{r_{A}^{2}}{R_{B}^{2}}
$$

What we know so far...

- Like charges repel, opposites attract. With what force? Coulomb's Law.
- Charge is conserved, comes in electron-sized chunks.
- Charge can move in conductors, is stuck in place in insulators.

(a) A and B exert electric forces on each other.

© 2012 Pearson Education, Inc.

(b) Remove body B...

... and label its former

 position as P.

(c) 2012 Pearson Education, Inc.
(c) Body A sets up an electric field $\overrightarrow{\boldsymbol{E}}$ at point P.

Test charge q_{0}

$\overrightarrow{\boldsymbol{E}}$ is the force per unit charge exerted by A on a test charge at P.
(c) 2012 Pearson Education, Inc.

Fig.24.2

$$
\vec{F}=\vec{E} \quad \text { Electric Field } \quad N / c
$$

B.

Fig.24.4
(a) The field produced by a positive point charge points away from the charge.

(b) The field produced by a negative point charge points toward the charge.

C 2012 Pearson Education, Inc.

Two charges $\left(q_{1} \& q_{2}\right)$ have equal magnitudes and are placed as shown in this figure. The net electric field at point P is vertically upward. Do we conclude:

1. That q_{1} is positive and q_{2} is negative.
2. That q_{1} is negative and q_{2} is positive.
3. That q_{1} and q_{2} both have the same sign

$$
\vec{E}=\frac{k q}{\left|r^{2}\right|} \hat{r}
$$

$\vec{F}=\vec{E} \cdot Q$
$N=N / C$
$E_{\text {net }}=2(E, y)$

Worksheet that says "page 24" (describe electric field...)

Worksheet that says "page 25" (calculate the electric field...)

