Things people want explained

ノ. MRI
\checkmark - Tape recorder
\checkmark TVs
\checkmark Cameras

- Touchscreens
\checkmark - Tesla Coils
~ Thermal Imaging
\checkmark - Holograms

ऽ. Lasers
\checkmark - E-M reciprocating engine
~ Electrically
Commutated Motors
\checkmark - Optical Storage (CDs)
\checkmark - 3D glasses
\checkmark - Regenerative Braking

Things people want explained

- Geological Magnetism
- Electric Motors
\checkmark, Telescopes
- Projector

ノ Speakers/headphones
~• Photovoltaics
\checkmark • Hard drives

Previous classes asked about...

- Graphene
- Electromagnetic drives
- Transformers
- Spectrophotometer
- Eyeglasses
- Waves
- Alternator
- Light \& spacetime
- Chemical potentials
- Magnets
- Circuits
- Microscopes
- Radar
- Maglev trains
- Doppler effect
- Tasers
- Cataracts, laser surgery
- Electromagnets

Previous classes asked about...

- Eyes/vision
- Batteries
- Chemical potentials
- Circuits
- Electromagnets
- Semiconductors
- Bio-electrical signals
- Fiber optics

Plastic Rod, total Change Q.

What is E at the Center of it's radius of curvature?

Plastic rod, charge $-Q$ P at center of curvature What is $\vec{E} \propto p ? \theta=60^{\circ}$

$$
\begin{aligned}
& \text { get } d E_{y}, d E_{x} \\
& d q=\lambda \cdot d s \quad(\lambda=Q / L) \\
& d E_{x}=d E^{2} \cos \theta \\
& \\
& =\frac{k d q}{r^{2}} \cos \theta=\frac{k \lambda d s}{r^{2}} \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& r \mid)^{d s} \quad d s=r d \theta \\
& d \theta \quad d E_{x}=\frac{k \lambda(x d \theta)}{r^{*}} \cos \theta \\
& E_{x}=\int d E_{x}=\frac{k \lambda}{r} \int_{-60}^{60} \cos \theta d \theta \\
& =\left.\frac{k \lambda}{r}\right|_{-60} ^{60} \sin \theta \\
& \vec{E}=E_{x}=\frac{k \lambda}{r}\left[\sin 60^{\circ}-\sin (-60)\right]=1.73 \frac{t \mu}{r}
\end{aligned}
$$

1) Forces 0^{n} each Charge already on there.

Net force:

$$
F \tilde{x}+(-F \hat{x})=0
$$

(a)

(b)
2) Torque? Each charge is torqued around C.O.m. by $\left(F_{\sin } \theta\right)$ with moment $(d / 2)$ So: $\left(\frac{d}{2}\right) F \sin \theta+(d / 2) F \sin \theta$
$\tau_{\text {Tot }}=d F \sin \theta=(q E) d \sin \theta$
(a)

(Review Ch. 10 , torque)
(b)

3) if $\vec{p}=q^{\vec{d}}$

Then $\Gamma \vec{Y}=q \vec{Q} \vec{d} \mid \sin \theta$
$|\vec{\imath}|=|\vec{E}| \vec{p} \mid \sin \theta$
or $\vec{\imath}=\vec{P} \times \vec{E}$
(Sec. l.ı0, cross products)
(a)

vectors in or out of page
(b)

4)

Stable:

unstuble:
(a)

(b)
$\max \approx$

$$
\theta=90^{\circ}
$$

equal ti- changes
separated by distance "d".
$\vec{p}=$ "dipole moment"
$\vec{F}=\vec{E} \cdot q$
(Ch. 10 torques)

$$
\begin{aligned}
& |\vec{\tau}|=r \cdot F \sin \theta \quad r=d / 2 \\
& =(1 / 2 d)\left(E_{q}\right) \sin \theta \quad \times 2
\end{aligned}
$$

(a)

Fig. 22-30a
(a) A water molecule, showing positive charge as red and negative charge as blue

The electric dipole moment \vec{p} is directed from the negative end to the positive end of the molecule.
(c) 2012 Pearson Education, Inc.

Potential Energy

$$
\begin{aligned}
& d w=\tau \cdot d \theta \\
& U=-w=\int_{q_{0}}^{\theta} d w \\
&=\int_{q_{0}}^{\theta}|p| E \mid \sin \theta d \theta \\
&=|p| E \mid \int_{q_{0}}^{\theta} \sin \theta d \theta \\
& U=|p| E \mid-\cos \theta \\
& U=-\vec{p} \cdot \vec{E}
\end{aligned}
$$

Fig. a

Fig. b

Work Done by an External Agent to Rotate an Electric

 Dipole in a Uniform Electric FieldConsider the electric dipole in fig. a. It has an electric dipole moment $\stackrel{\mathrm{r}}{p}$ and is positioned so that $\stackrel{\mathrm{r}}{p}$ is at an angle θ_{i} with respect to a uniform electric field $\stackrel{\mathrm{r}}{E}$.
An external agent rotates the electric dipole and brings it to its final position shown in fig. b. In this position $\stackrel{\mathrm{r}}{p}$ is at an angle θ_{f} with respect to $\stackrel{\mathrm{r}}{E}$.
The work W done by the external agent on the dipole is equal to the difference between the initial and final potential energy of the dipole:

$$
\begin{aligned}
& W=U_{f}-U_{i}=-p E \cos \theta_{f}-\left(-p E \cos \theta_{i}\right) \\
& W=p E\left(\cos \theta_{i}-\cos \theta_{f}\right)
\end{aligned}
$$

An electric dipole is twisted from the first position to the second. What happens to its potential energy " U "?

1. U decreases
 2. U increases 3. Nothing

An electron is placed at the point P and released from rest in the electric field shown below. Which of the following vectors represents the direction of the force, if any, on the electron?

Fig. 22-4

$$
\Delta \vec{F}=\varepsilon \vec{E}
$$

Inkjet printer

$$
\tilde{F}_{\text {net }}=m a
$$

"Dielectric Breath down"

e^{-v}

$$
\vec{F}=\vec{E} \cdot q
$$

\vec{E} of $3 \times 10^{6} \mathrm{~V} / \mathrm{m}$
breaks air

Figure 25.1

$$
d E=\frac{h d a}{r^{2}}
$$

Source produces an electric field $\overrightarrow{\boldsymbol{E}}$.

 How do we calculate $\overrightarrow{\boldsymbol{E}}$?
Brute force method: Chapter 24

- Divide source into small pieces.
- Treat each piece as a charged particle.
- Add/integrate electric field due to each piece using Coulomb's law.

Use Gauss's law: Chapter 25

- General relationship between charge and field line concentration.
- Very easy to use if source is symmetric.
- One of the four fundamental equations of electricity and magnetism.

(a) A box containing an unknown amount of

 charge
(c) 2012 Pearson Education, Inc.
(b) Using a test charge outside the box to probe the amount of charge inside the box

(a) Electric flux $=E A=\mathbb{\Psi}_{E}$

(b) Electric flux $=0$

Figure 25.6

A.

Worksheet with folded paper...

Worksheet with cube...

