(a) Positive charge inside box, outward flux

© 2012 Pearson Education, Inc.

(b) Positive charges inside box, outward flux

(c) Negative charge inside box, inward flux

(d) Negative charges inside box, inward flux

(a) No charge inside box, zero flux

© 2012 Pearson Education, Inc.

(c) No charge inside box, inward flux cancels outward flux.

(b) Doubling the enclosed charge doubles the flux.

 $\vec{E} = \frac{h 2a}{r^2}$

© 2012 Pearson Education, Inc.

What if we double the size of the box: what happens to the net flux?

Gauss' Law

$$\Phi_{\rm net} = q_{\rm enc}/\epsilon_0$$

where $\varepsilon_0 = 8.854 \times 10^{-12}$ (measures how well electric field lines can poke through empty space)

Try page w/ cylinders

 $(A\overline{A} = \overline{A}\overline{A})$

if no Q inside this surface, $Z dA \cdot E = 0$

The numbers and arrows indicate the amount of electric flux and direction of the field lines for each face of a Gaussian cube. Which cube contains a net negative charge?

Let's be careful with this shape, in a uniform field, and see if net flux really is 0

Two point charges, +q (in red) and -q (in blue), are arranged as shown. Through which closed surface(s) is the net electric flux equal to zero?

- 1. Surface A
- 2. Surface B
- 3. Surface C
- 4. Surface D
- ✓5. both C and D

48 of 55

What is electric flux through <u>one</u> side of this cube, if +q is right in the middle?

Thei = gene E

680 T.

What if the q is moved a little to the left?

Turn Problem around. Can we use Gauss' Law to figure out what the E from some charge is?

 $k = \frac{1}{4\pi\epsilon_{0}} = 8.99 \times 10^{6}$

Recipe for Applying Gauss' Law

- **1.** Make a sketch of the charge distribution.
- **2.** Identify the symmetry of the distribution and its effect on the electric field.
- **3.** Gauss' law is true for **any** closed surface. Choose one that makes the calculation of the flux Φ as easy as possible.

How 'bout that charge q_{enc}?

- Point charge? It's "q" Coulombs
- Line of charge? It's " λ " C/m
- Sheet of charge? It's " σ " C/m²
- Volume of charge? It's " ρ " C/m³
- SO: You might be multiplying times a length, an area, or a volume to get back to Coulombs for figuring out the total "q_{enc}"

You try the worksheet with the spherical distribution of charge

Enclosed $\frac{1}{\sqrt{2}\pi}R^{3} = \frac{30}{4\pi}R^{3}$ Gaussian charge is q_{-} surface U UNIS MC. $\overline{D} = \int \overline{E} \cdot dR$ $\overline{E}_{i} dA$ parallels $= \int |\overline{E}| dA | \cos \theta'$ $= \int |\overline{E}| dA | \cos \theta'$ $= E \int dA = E \int dA = E A$ $\varepsilon_0 \in A = Q = \varepsilon_0 \in (4\pi r^2)$ G.L: direction? Out n (a)Enclosed E inside. Same, only genelosed = Vol charge is q'. . 1/11 Gaussian .surface 50:EFA= とうう(イット) (b)

