Potential

What's the work done to move this charge from i to f ?

$$
\begin{array}{lr}
w=\vec{F} \cdot \vec{d} & \vec{F}=q_{0} \vec{E} \\
w=-q_{0}|E| d \mid & \Delta u=-w=U_{f}-U_{i}
\end{array}
$$

$$
\Delta U=q_{0} E d
$$

Object moving in a uniform gravitational field

(a) Positive charge moves in the direction of $\overrightarrow{\boldsymbol{E}}$:

- Field does positive work on charge.
- U decreases.

© 2012 Pearson Education, Inc.
(b) Positive charge moves opposite $\overrightarrow{\boldsymbol{E}}$:
- Field does negative work on charge.

Fig.23.4
(a) Negative charge moves in the direction of $\overrightarrow{\boldsymbol{E}}$:

- Field does negative work on charge.

© 2012 Pearson Education, Inc.
(b) Negative charge moves opposite $\overrightarrow{\boldsymbol{E}}$:
- Field does positive work on charge.

A uniform electric field is directed in the $-x$ direction. If you were to move a positive charge in the $+x$ direction, how would the totaldenergy of the positive charge / electric field system change, if at all?

1. The total energy of the system increases
2. The total energy of the system decreases
3. The total energy of the system would remain unchanged.

2009 Pearson Education, Inc.

a

b

© 2009 Pearson Education, Inc.

How about this "V" thing?

$$
\Delta u=-w=-(-q \in d)=q \in d
$$

U = electric potential encrisy (Joule J)
define Electric Potential $V=\frac{U}{q_{0}}$.

$$
\begin{aligned}
& \quad \Delta V=V_{f} \cdot V_{i}=\frac{U_{f}}{q_{0}}-\frac{U_{i}}{q_{0}}=\frac{\Delta U}{q_{0}}=-\frac{W}{q_{0}} \\
& V_{\text {is in } V_{0}+s / \mathrm{J} / \mathrm{J}} \quad 1 \mathrm{w} / c \cdot\left(\frac{1 V \cdot c}{1 \mathrm{~J}}\right)\left(\frac{1 J}{1 W \cdot m}\right)=1 \mathrm{~V} / \mathrm{m} \\
& E=N /
\end{aligned}
$$

Point a (positive terminal)

Point b (negative terminal)

(c) 2012 Pearson Education, Inc.

Worksheet time:
Work done by an electric field...

What's the work done to move this charge from a to b ?

$$
\begin{aligned}
& \vec{F}=\vec{B} \cdot q_{b}=\left(\frac{k q}{r^{2}}\right) a_{0}=\frac{k q q_{0}}{r^{2}} \\
& W_{a \rightarrow b}=\int_{a}^{b} \vec{F} \cdot \overrightarrow{d l} \quad \vec{l}=d r \hat{r} \\
& W_{a \rightarrow b}=\int_{a}^{b}|\vec{F}| d \vec{l} \mid \cos 0 \\
& W_{a \rightarrow 1}=\int_{a}^{b} \frac{k q q_{0}}{r^{2}} d r \quad\left(\int \frac{d}{r^{2}}=\frac{-1}{r},\right. \\
& =k q q_{0}\left(\frac{1}{r_{a}}-\frac{1}{r_{b}}\right)
\end{aligned}
$$

Test charge q_{0} moves from a to b along an arbitrary path.

$$
\begin{aligned}
d w & =\hat{F} \cdot d l \\
& =|F| d l \cos \theta
\end{aligned}
$$

(a) q and q_{0} have the same sign.

U is always a relative thing: Energy Here vs. Energy there.

We can pick a "zero"...

$$
\begin{aligned}
& w=k_{q q_{0}}\left(\frac{1}{r_{a}}-\frac{1}{r_{b}}\right)=-\Delta u \\
& \Delta u=k_{q_{2}}\left(\frac{1}{r_{b}}-\frac{1}{r_{a}}\right) \\
& r=\infty, \quad u=0
\end{aligned}
$$

(b) q and q_{0} have opposite signs.

(c) 2012 Pearson Education, Inc.

U of q_{0} when there are more charges?
q_{1}

(a) A positive point charge

(b) A negative point charge

$$
V(\infty)=0
$$

(c) 2012 Pearson Education, Inc.

[^0]
U of this collection?
$U_{\text {of a chare }}=q_{\text {ot maciclar }} V_{\text {at that place }}$
So: $U_{1}=a_{1} V_{1}$
$$
V_{1}: \text { s caused } b_{3} q_{2}, q_{3}: \frac{k q_{2}}{d}+\frac{k q_{3}}{d}
$$

So, $U_{1}=a_{1}\left(\frac{k q_{2}}{d}+\frac{h q_{3}}{d}\right)$
like wise for U_{2}, U_{3}

$$
\text { Total } U=U_{1}+U_{2}+U_{3}
$$

[^0]: (c) 2012 Pearson Education, Inc.

