Potential

What's the work done to move this charge from *i* to *f*?

DU= 90Ed

- (a) Positive charge moves in the direction of \vec{E} :
- Field does *positive* work on charge.

- (b) Positive charge moves opposite \vec{E} :
- Field does *negative* work on charge.

v

• U increases.

Fig.23.4

- (a) Negative charge moves in the direction of \vec{E} :
- Field does *negative* work on charge.

- (b) Negative charge moves opposite \vec{E} :
- Field does *positive* work on charge.

A uniform electric field is directed in the -x direction. If you were to move a positive charge in the +x direction, how would the total energy of the positive charge / electric field system change, if at all?
 ✓ 1. The total energy of the system increases

- 2. The total energy of the system decreases
- 3. The total energy of the system would remain unchanged.

How about this "V" thing?

$$\Delta U = -W = -(-q \in d) = -26d$$

$$U = \text{electric Potential encysy (Jaules)}$$

$$define \quad \text{Electric Potential } V = U_{q_0} \qquad \overrightarrow{E}$$

$$d \qquad (f \quad f) \quad (f$$

$$V = 1.5V$$

$$U = V \cdot q = (1.5V)(1e)$$

$$= 1.5eV$$

$$1 eV = 1.6 \times 10^{-19} J$$

$$Looh @ X - ray machine$$

$$SUEV$$

$$beam of @ auros: SOHV = SOHeV$$

Worksheet time: Work done by an electric field... What's the work done to move this charge from a to b?

(a) q and q_0 have the same sign.

U is always a relative thing: Energy Here vs. Energy there.

We can pick a "zero"...

$$v = kqq_0 \begin{pmatrix} 1 \\ r_a - \frac{1}{r_b} \end{pmatrix} = -\Delta u$$

$$\Delta u = kqq_0 \begin{pmatrix} 1 \\ r_b - \frac{1}{r_a} \end{pmatrix}$$

$$r = \infty \quad U = 0$$

(b) q and q_0 have opposite signs.

(a) A positive point charge

ちゃ。 -Lo r 90 1= 49 $V(\infty) = ()$

(b) A negative point charge

U of two collection?
Uol a charge = 9 of the clare Var that place
So:
$$U_1 = q_1 V_1$$

 V_1 is caused by q_2, q_3 : $\frac{k_1 q_2}{d} + \frac{k_1 q_3}{d}$
Su, $U_1 = q_1 \left(\frac{k_1 q_2}{d} + \frac{k_1 q_3}{d}\right)$
like wise for U_2 , U_3
Total $U = U_1 + U_2 + U_3$