

^{© 2012} Pearson Education, Inc.

$$1/d_{o} + 1/d_{i} = 1/f$$

Santa is standing in front of a security mirror at the mall. His image is 4x smaller than he is, and he's 2.0m away. What's the focal length of the mirror?

Draw it out first...

A classic "Far Side" By Gary Larson

(b) Magnified portion of (a)

(*a*)

Law of Reflection:

$$\Theta_1 = \Theta_2$$

Shell's Law of Refraction:
 $N_2 Sin \Theta_2 = \Pi_1 Sin \Theta_1$
 $N = index of refraction$
Speed of light in Stuff is slove:
 $= -\frac{1}{2} \Pi_1$
Maching: $n \ge 1$ and $h \ge 1.00029$
Matter: 1.33 glass $n = 1.5$

(*b*)

Table 33.1 Index of Refraction for Yellow Sodium Light, $\lambda_0 = 589$ nm

Index of

n is factor speed slows down by $v = \frac{4}{n}$ $v = f \lambda$ E = h f

Refraction, n Substance Solids Ice (H_2O) 1.309 Fluorite (CaF_2) 1.434 1.49 Polystyrene Rock salt (NaCl) 1.544 Quartz (SiO_2) 1.544 1.923 $Zircon (ZrO_2 \cdot SiO_2)$ Diamond (C) 2.417 Fabulite (SrTiO₃) 2.409 Rutile (TiO_2) 2.62 Glasses (typical values) Crown 1.52 Light flint 1.58 Medium flint 1.62 Dense flint 1.66 Lanthanum flint 1.80 Liquids at 20°C Methanol (CH₃OH) 1.329 Water (H_2O) 1.333 1.36 Ethanol (C_2H_5OH) Carbon tetrachloride (CCl_4) 1.460 Turpentine 1.472 Glycerine 1.473 Benzene 1.501 Carbon disulfide (CS_2) 1.628 © 2012 Pearson Education, Inc.

3. When a monochromatic light ray crosses the interface between two given materials a and b, the angles θ_a and θ_b are related to the indexes of refraction of a and b by

$$\frac{\sin\theta_a}{\sin\theta_b} = \frac{n_b}{n_a}$$

(a) A ray entering a material of *larger* index of refraction bends *toward* the normal.

(b) A ray entering a material of *smaller* index of refraction bends *away from* the normal.

(c) A ray oriented along the normal does not bend, regardless of the materials.

To shoot a fish with a gun, should you aim directly at the image, slightly above, or slightly below?

0%

1.

61%

0

3

39%

2.

- 1. Aim directly at image
- 2. Aim slightly above
- Aim slightly below

Due to refraction, the image will appear higher than the actual fish, so you have to aim lower to compensate. NZ

17

To shoot a fish with a *laser gun*, should you aim directly at the image, slightly above, or slightly below?

77%

- ✓ 1. Aim directly at image
 - 2. Aim slightly above
 - 3. Aim slightly below

The light from the laser beam will also bend when it hits the air-water interface, so aim <u>directly</u> at the fish. light from fish

laser beam

(a) Small angle of incidence

(b) Larger angle of incidence

(c) Refracted beam parallel to interface

(d) Total internal reflection

(a)

(b)

Student problem: Given θ_1 is 40 degrees (just one possibility) Find θ_2 then θ_3 , and determine is θ_3 greater than the critical angle that gives total internal reflection? Make sure you can explain the condition

$$n_{\text{air}} = 1.000 \text{ A} \qquad \begin{array}{c} \theta_{1} & & & & & \\ & & & & \\ s_{0} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Student problem: Given θ_1 is 40 degrees (just one possibility) Find θ_2 then θ_3 , and determine is θ_3 greater than the critical angle that gives total internal reflection? Make sure you can explain the condition

Student problem: What if it's not air behind the diamond at point B, but rather grease from your finger with n=1.6? Is diamond still sparkly?

here,
$$\Theta_c \in Point B$$

is new: $\Theta_c = Sin^{-r} \left(\frac{1.6}{2.419} \right) = 41^\circ$

Student problem: What if it's not air behind the diamond at point B, but rather grease from your finger with n=1.6? Is diamond still sparkly?

(a)

Note: This is a side view of the situation shown in Fig. 33.27.

When light strikes a surface at the polarizing angle, the reflected and refracted rays are perpendicular to each other and

$$\tan \theta_{\rm p} = \frac{n_b}{n_a}$$

$$130^{a} = \Theta_{p} + 90^{a} + \Theta_{b}$$

$$\Theta_{b} = 90^{a} - \Theta_{p}$$

$$n_{a} \sin \Theta_{p} = n_{b} \sin \Theta_{b}$$

$$n_{a} \sin \Theta_{p} = h_{b} \sin (90 - \Theta_{p})$$

$$n_{a} \sin \Theta_{p} = h_{b} \cos (\Theta_{p})$$

$$Tan \Theta_{p} = \frac{h_{b}}{n_{a}}$$

Incident white light, yunpolarized z ... QElectric charges in air molecules at O oscillate in the direction of the E field of the incident light from the sun, acting as antennas that produce scattered light. The scattered light that reaches the observer directly below O is polarized in the z-direction.

> Air molecules scatter blue light more effectively than red light; we see the sky overhead by scattered light, so it looks blue.

This observer sees reddened sunlight because most of the blue light has been scattered out.

Rayleigh Scattering My+dan

(sidena

Even through clouds, light from Sun's direction unpolarized; light from away from sun polarized. Bees can see this.

Iceland spar calcite crystals are polarizers: dramatized in The "Vikings" TV show, recent archaeology is backing up these "sunstones"

Image swiped from Wikipedia's "Mirage" article

Plane mirror

When $n_a > n_b$, P' is closer to the surface than P; for $n_a < n_b$, the reverse is true.

(a) Plane mirror

