Final Exam Scheme

• Wednesday 12 December, 2pm-4pm

– In our normal room, MWAH 347

- There's been ~one midterm's worth of new stuff since last midterm
 - So about half the final will look like a midterm on the EM waves & optics stuff
- However, it is a final exam after all, and there are two hours to take it, so the other half the final will be comprehensive, reviewing older stuff
 - That's more than a usual test, so you can bring two pages of notes instead of just the usual one

How to review old stuff?

- Start with your old midterms. Can you work them out, starting fresh?
 - Fresh? I mean read the problem, put your answer aside, and pretend you're taking the test again for the first time: then grade your new answer yourself
 - For topics that give you trouble, then go work out problems from HW (assigned, practice, online, whatever) related to that topic
- An old test, as per usual, is posted for more practice

where is actual mosquire compared to ingge?

Picture from PBS' "Nova" show

Do Refraction Problems worksheet

(*b*)

"Lensmaker's Equation"

$$\frac{1}{f} = (n - 1) \left[\frac{1}{r_1} - \frac{1}{r_2} \right]$$

Follows same sign convention as Table 38.3:

Convex surface (facing object) is "+" Concave surface (facing object) is "-"

Positive focal length is converging Negative focal length is diverging

© Cengage Learning

C

(a) Object beyond focal point F

Ray Tracing Worksheet.

There could be two answers: is this lens converging or diverging? Worksheet isn't specific... So do it each way: front and back!

Not quite the answers for that worksheet, but this figure covers it plus more...

(c) Object *O* is even closer to focal point; image *I* is real and even farther away.

(e) Object *O* is inside focal point; image *I* is virtual and larger than object.

(b) Object O is closer to focal point; image I is real and farther away.

(d) Object O is at focal point; image I is at infinity.

(f) A virtual object O (light rays are *converging* on lens)

© 2012 Pearson Education, Inc.

Couldn't find exactly the last figure for the diverging lenses, but this is a pretty good one:

Stolen from this website, plenty of useful stuff here.

Rooftop solar water heater in Greece

Image from Wikipedia's Thermal Solar Power article

3,500° Solar Furnace in Odeillo, France

Image from Wikipedia's Thermal Solar Power article

Photovoltaic array at the National Solar Energy Center, Israel

Image from Wikipedia's Photovoltaic article

Duluth's Solar trash cans Are from BigBelly Solar

Thornton/Rex, Modern Physics for Scientists and Engineers, 2/e Figure 7.13

Harcourt, Inc. items and derived items copyright © 2000 by Harcourt, Inc.

Thornton/Rex, Modern Physics for Scientists and Engineers, 2/e Table 8.1

TABLE 8.1 Order of Electron Filling in Atomic Subshells				
n	e	Subshell	Subshell Capacity	Total Electrons in All Subshells
1	0	1s	2	2
2	0	25	2	4
2	1	2p	6	10
3	0	35	2	12
3	1	3p	6	18
4	0	45	2	20
3	2	3d	10	30
4	1	4p	6	36
5	0	55	2	38
4	2	4d	10	48
5	1	5p	6	54
6	0	65	2	56
4	3	4f	14	70
5	2	5d	10	80
6	1	6p	6	86
7	0	75	2	88
5	3	5f	14	102
6	2	6d	10	112

Harcourt, Inc. items and derived items copyright © 2000 by Harcourt, Inc.

Thornton/Rex, Modern Physics for Scientists and Engineers, 2/e Figure 8.1

Harcourt, Inc. items and derived items copyright @ 2000 by Harcourt, Inc.

Thornton/Rex, Modern Physics for Scientists and Engineers, Figure 11.6a,b

Thornton/Rex, Modern Physics for Scientists and Engineers, 2/e Figure 11.6c,d

Harcourt, Inc. items and derived items copyright © 2000 by Harcourt, Inc.

Harcourt, Inc. items and derived items copyright © 2000 by Harcourt, Inc.

Thornton/Rex, Modern Physics for Scientists and Engineers, 2/e Figure 11.18a

Thornton/Rex, Modern Physics for Scientists and Engineers, 2/e Figure 11.18b

Harcourt, Inc. items and derived items copyright © 2000 by Harcourt, Inc.